Our website uses cookies. They help us understand how customers use our website so we can give you the best experience possible. By continuing to browse this site or choosing to close this message, you give consent for cookies to be used. The cookies are not used for advertising. This applies to visitors from EU.

Giant molecular cages made for energy conversion and drug delivery

Posted by Neelansh Bhartiya 13/07/2017 0 Comment(s)

 

Scientists from Trinity College Dublin and AMBER, the Science Foundation Ireland-funded materials science research centre hosted in Trinity College Dublin, have created 'molecular cages' that can maximise the efficiency of converting molecules in chemical reactions, and that may in future also be used as sensors and drug-delivery agents. The cages can be packed with different molecules, many of which have a specific task or functionality. Incredibly, a teaspoon of powder containing these cages provides a greater internal surface area to boost reactivity and storage capacity than would be provided by an entire football field (4000 m2/g).

This enormous intrinsic surface area relative to the weight of the structure in combination with the solubility offers great promise for energy conversion, while the structure blueprint (hollow, with sub-cages) allows different molecules to be discretely contained within. This latter feature is key in increasing the potential uses for these 'metal-organic-organic polyhedra' (MOP), because it means materials can be packed so as to react only when specific conditions present themselves.

One such example is in bio-sensing and drug-delivery, with a biological cue required to kick-start a chemical reaction. For example, a drug could be encapsulated in one of these MOP in the knowledge that it would only be released at the specific target site, where a specific biological molecule would trigger its release.

The researchers behind the breakthrough, which has just been published in leading international journal Nature Communications, also hope to develop light-active porous, metal-organic materials for use in green energy. The dream would be to create a molecule that could simply use light to convert energy -- essentially replicating the way plants produce energy via photosynthesis.

For more details: - https://www.sciencedaily.com/releases/2017/06/170629101241.htm

Author’s Bio

...

Author’s name: Neelansh Bhartiya

Write a Comment

Google Rating
5/5
2 customer reviews